home *** CD-ROM | disk | FTP | other *** search
/ SIGGRAPH 1996: Proceedings / SIGGRAPH 1996: Proceedings.iso / pc / papers / prusinki / readme.mac < prev    next >
Text File  |  1996-05-26  |  3KB  |  87 lines

  1.  
  2.  
  3. QuickTime animations:
  4.  
  5.  
  6.  
  7.                         Competition for space
  8.  
  9. honda.mov  15s  (Figure 5)
  10.  
  11. In this model, two planar branch tiers compete for space. The circles represent
  12. leaf clusters, located at the nodes. The endpoint of each branch, or apex,
  13. produces new branches, unless it falls into an existing cluster.
  14.  
  15. This interaction limits the extent of branching, and adapts the shape of each
  16. tier to the presence of its neighbor.
  17.  
  18.  
  19.  
  20.                    Clonal plant propagation
  21.  
  22. clover.mov   45s  (Figure 7)
  23.  
  24. This is the top view of a ground area, with different intensities of incoming
  25. light. A clonal plant propagates by means of horizontal spacers which connect
  26. the individual leaves. Old spacers and leaves die.
  27.  
  28. The plant takes advantage of high light intensity by increasing the frequency
  29. of branching and decreasing the length of the spacers. Collisions are avoided
  30. as in animation honda.mov.
  31.  
  32. After colonizing the patch at the bottom left corner, the plant searches for
  33. another favorable patch. In its first attempt, the top right patch has been
  34. missed. The plant tries again, and this time succeeds.
  35.  
  36. Light conditions in the top right patch are not sufficient to sustain the
  37. continuos presence of the plant. The colony disappears until the patch is
  38. reached again by a new wave of propagation.
  39.  
  40. The dynamics of propagation reflect the plant's adaptation to its environment.
  41.  
  42.  
  43.  
  44.           Development of a root in soil (2D)
  45.  
  46. root2d.mov  18s (Figure 9)
  47.  
  48. The field surrounding a plant may be created by various physical processes. In
  49. this case, field values represent concentrations of water, diffusing in
  50. soil. The tip of the main root follows the gradient of water concentration. The
  51. main root and the rootlets also absorb water from the environment.
  52.  
  53. The resulting developmental pattern reflects a cycle of interactions in which
  54. the environment affects the root, and the root reciprocally affects the
  55. environment. 
  56.  
  57.  
  58.  
  59.            Development of roots in soil (3D)
  60.  
  61. root3d.mov  20s (Figure 10)
  62.  
  63. This is a three-dimensional extension of the model in animation root2d.mov. 
  64. Water concentration is visualized by a semi-transparent iso-surface surrounding
  65. the roots. The growing tips of the roots and rootlets absorb water that
  66. diffuses in the soil. As a result of competition for water, the roots grow away
  67. from each other.
  68.  
  69. Rotations highlight the resulting three-dimensional structure.
  70.  
  71. If the rootlets spread out less extensively, the area of influence of each root
  72. system is smaller, and the roots grow closer together.
  73.  
  74.  
  75.  
  76.            Competition of branches for light
  77.  
  78. trees.mov   16s (Figure 14)
  79.  
  80. In this simulation, two genetically identical trees compete for light from the
  81. sky hemisphere. Clusters of leaves, not shown to make the branching structure
  82. clearer, cast shadows on branches further down. An apex in shadow does not
  83. produce new branches. An existing branch whose leaves do not receive enough
  84. light dies and is shed from the tree. Competition for light controls the
  85. density of branches in the tree crowns. 
  86. Moving the trees apart reveals the adaptation of crown shape to the presence 
  87. of the neighbor tree.